(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai 400058.
End semester exam
/ December 2016

Max. Marks: 100
Class: TE
Name of the Course: DDSS

Instructions:

Q. P. Code:

Duration: 4 hr
Program: Civil
Course Code: CE 352
Master file

1. All questions are compulsory.
2. Assume suitable data wherever necessary and state it clearly.
3. Figures to the right indicate full marks.
4. Use of IS 800-2007 and Steel table is allowed.
Q. 1 The truss shown in the figure has end A as hinged and end G as

20M roller support. Member loads are as follows.

Member	DD (kN)	LL (kN)	WL (kN)
CH	$7(\mathrm{C})$	$7(\mathrm{C})$	$30(\mathrm{~T})$
CD	$28(\mathrm{~T})$	$28(\mathrm{~T})$	$100(\mathrm{C})$

Design these members considering proper partial safety factor and combination and bolted connection. Draw details of joint ' C '.

Q. 2	Design beam BI as laterally supported using the following data. Thickness of the slab 140 mm $\mathrm{L} \mathrm{L}=3 \mathrm{kN} / \mathrm{m}^{2}$ all the beams support 150 mm thick brick wall of 3.5 m height. Density of masonry is $20 \mathrm{kN} / \mathrm{m}^{3}$ and that of concrete is $25 \mathrm{kN} / \mathrm{m}^{3}$.	20M
Q. 3 a) b)	Design a column made of I section to carry factored load of 2000 kN . One end of the member is restrained against rotation as well as translation while the other end is restrained against translation but free for rotation. Unsupported lenth of the column is 3 m . 2 channels ISMC -250 are placed back to back at a spacing of 200 mm if the effective length of the column corresponding to x axis is 5 m and corresponding to y -axis is 3.8 m . determine the safe capacity of the column.	10 M $10 \mathrm{M}$
Q. 4	Determine compressive and tensile load for a single angle discontinued member of a roof truss. The c/c distance is 1.8 m and 2 boits of M16 of grade 4.6 grade are provided at each end. Size of angle ISA $90 \times 90 \times 8$ consider hinged condition	20. M
Q. 5		
	Explain philosophy behind the Limit state method.	5M

b)	Explain the term local buckling with the help of neat sketch Design slab base and concrete pedestal for ISHB $250 @ 51 \mathrm{~kg} / \mathrm{m}$. the column has an effective depth of 5 m . consider M15 and S.B.C of soil as $250 \mathrm{kN} / \mathrm{m}^{2}$	$\begin{aligned} & 5 \mathrm{M} \\ & 10 \mathrm{M} \end{aligned}$
Q.6 a) b)	A laterally supported beam of effective span 8 m consist of ISMB $500 @ 86.9 \mathrm{~kg} / \mathrm{m}$ check whether beam is safe or not Explain the term local buckling with the help of neat sketch	12 M 8M
Q. 7	Calculate safe working load for an eccentric bracket connection shown in the figure. Use bolt of grade 4.6	20M

*** BEST OF LUCK ***

